Simak Mengenai Istilah Relasi

Posted on

Pada artikel kali ini kang darus akan membahas Istilah Relasi

Istilah Relasi

Relasi yaitu hubungan antara anggota pada suatu himpunan dengan anggota himpunan yang lainya. Relasi dari himpunan A ke himpunan B ialah menghubungkan anggota-anggota himpunan A pada anggota-anggota himpunan B.

Sifat – Sifat Relasi

Sebuah relasi A×A, adalah relasi dari himpunan A kepada A sendiri, mempunyai sifat-sifat berikut:

  • Refleksif
  • Irefleksif
  • Simetrik
  • Anti-simetrik
  • Transitif

Di sebut relasi R dari A kepada A sebagai relasi R dalam A.

Jenis-Jenis Relasi

  • Relasi Simetrik
  • Relasi anti Simetrik
  • Relasi Transitif
  • Relasi Refleksif
  • Relasi Invers

1. Relasi Invers

Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari R yang dinyatakan dengan relasi dari B ke A yang mengandung semua pasangan terurut yang apabila dipertukarkan masih termasuk dalam R. Ditulis dalam notasi himpunan sebagai berikut ; R-1= {(b,a) : (a,b)R}

Contoh:

A = {1,2,3} B = {x,y}
R = {(1,x), (1,y), (3,x)} relasi dari A ke B
R-1= {(x,1), (y,1), (x,3)} relasi invers dari B ke A

2. Relasi Simetrik

Misalkan R = (A, B, P(x,y)) suatu relasi. R disebut relasi simetrik, jika tiap (a,b)R berlaku (b,a)R. Dengan istilah lain, R disebut juga relasi simetrik jika a R b berakibat b R a.
Contoh Relasi Simetrik :
perhatikan satu per satu. Setiap kali kamu menemukan pasangan, misalnya (a, b), maka cari apakah (b, a) juga ada. Kalau ternyata tidak ada, pasti relasi itu tidak simetrik.

3. Relasi Refleksif

Misalkan R = (A, A, P(x,y)) suatu relasi. R disebut relasi refleksif, jika setiap A berlaku (a,a)R. Dengan kata lain, R disebut relasi refleksif jika tiap-tiap anggota pada A berelasi dengan dirinya sendiri
Contoh :
Relasi Refleksif Diketahui A = {1, 2, 3, 4} dan R = {(1,1), (2,3), (3,3), (4,2), (4,4)} Apakah R relasi refleksif ? R bukan relasi refleksif, karna (2,2) tidak termasuk dalam R. Jika (2,2) termasuk dalam R, yaitu R1= {(1,1), (2,2), (2,3), (3,3), (4,2), (4,4)} maka R1 merupakan relasi refleksif.

4. Relasi anti Simetrik

Suatu relasi R bisa disebut relasi anti simetrik andai (a,b)R dan (b,a)R maka a=b. Dengan kata lain Jika a, b A, a≠b, maka (a,b)R atau (b,a)R, tetapi tidak kedua-duanya.
Contoh :
Misalkan R suatu relasi pada himpunan bilangan asli yang didefinisikan “y habis dibagi oleh x”, maka R merupakan relasi anti simetrik sebab jika b habis dibagi a dan a habis dibagi b, maka a = b.
Misalkan A = {1, 2, 3} dan R1= {(1,1), (2,1), (2,2), (2,3), (3,2)}, maka R1bukan relasi anti simetrik, sebab (2,3)R1dan (3,2)R1.

5. Relasi Transitif

Misalkan R relasi dalam himpunan A. R disebut relasi transitif jika berlaku ; (a,b)R dan (b,c)R maka (a,c)R. Dengan kata lain andai a berelasi dengan b dan b berelasi dengan c, maka a berelasi dengan c.
Contoh :
Misalkan A = {a, b, c} dan R = {(a,b), (a,c), (b,a), (c,b)}, maka R bukan relasi transitif, sebab (b,a)R dan (a,c)R tetapi (b,c)R. dilengkapi agar R menjadi relasi transitif R = {(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)}